Licenciatura em Gestão

Operational Research Chapter 4

2014-2015

The Transportation and the Assignment Problems

4. The Transportation and the Assignment Problems
4.1 Introduction
4.2 Transportation Problem
4.3 Assignment Problem

The Transportation Problem

Transportation Problem (TP) - determine the quantities of an homogeneous commodity to be shipped from a set of distribution centres - the origins (sources) - to a set of receiving centres - the destinations - such that the total cost is minimised.

Applications:

- Products transportation;
- Production planning;
- Scheduling human resources;
- ...

The Transportation Problem

Data: $m=$ number of origins;
$n=$ number of destinations;
$c_{i j}=$ cost per unit distributed from i to j
$s_{i}=$ supply at origin $i ;$
$d_{j}=$ demand at destination $j ;$

Assumption: the TP is balanced, that is, the total supply and total demand are equal.
$x_{i j}-$ amount to ship from origin i to destination j.
Z - total cost of the transportation plan

LP formulation:

$$
\begin{aligned}
& \text { Minimize } \mathrm{Z}=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
& \begin{cases}\sum_{j=1}^{n} x_{i j}=s_{i} & (i=1, \ldots, m) \\
\sum_{i=1}^{m} x_{i j}=d_{j} & (j=1, \ldots, n) \\
x_{i j} \geq 0 & (i=1, \ldots, m ; j=1, \ldots, n)\end{cases}
\end{aligned}
$$

TP Prototype Example

TP Prototype Example

Solver Parameters

To: ○ Max Min \quad Value Of: $\quad 0$

By Changing Variable Cells:
\$D\$15:\$G\$17 E區

Subject to the Constraints:

$\begin{aligned} & \text { \$H\$15:\$H\$17 = \$J\$15:\$J\$17 } \\ & \text { \$D\$18:\$G\$18 = \$D\$20:\$G\$20 } \end{aligned}$	*	Add
		Change
		Delete
		Reset All
	\checkmark	Load/Save

\checkmark Make Unconstrained Variables Non-Negative
Select a Solving Method: \quad Simplex LP $\quad \square \quad \square$

Solving Method
Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-smooth.

Close

TP Prototype Example reports

Microsoft Excel 8.0e Answer Report					
Worksheet: [PT_prot_P\&T.xls]Sheet1					
Report Created: 29-04-2003 20:06:05					
Target Cell (Min)					
Cell	Name	Original Value	Final Value		
\$ ${ }^{\text {S }} 18$	total total		$0 \quad 152535$		
Adjustable Cells					
Cell	Name	Original Value	Final Value		
\$D\$15	F1 A1		$0 \quad 0$		
\$E\$15	F1 A2		$0 \quad 20$		
\$ $\$ 15$	F1 A3		$0 \quad 0$		
\$G\$15	F1 A4		$0 \quad 55$		
\$D\$16	F2 A1		0 80		
\$E\$16	F2 A2		$0 \quad 45$		
\$F\$16	F2 A3		00		
\$G\$16	F2 A4		$0 \quad 0$		
\$D\$17	F3 A1		$0 \quad 0$		
\$E\$17	F3 A2		00		
\$F\$17	F3 A3		$0 \quad 70$		
\$G\$17	F3 A4		030		
Constraints					
Cell	Name	Cell Value	Formula	Status	Slack
\$H\$15	F1 total		75 \$ ${ }^{\text {S }} 15=\$$ S 15	Binding	0
\$H\$16	F2 total		\$ \$ ${ }^{\text {S }} 16=\$ \$ 16$	Binding	0
\$H\$17	F3 total		\$ \$ ${ }^{\text {d }} 17=\$$ S 17	Not Binding	0
\$D\$18	total A1		30 \$D\$18=\$D\$20	Not Binding	0
\$E\$18	total A2		65 \$E\$18=\$E\$20	Not Binding	0
\$F\$18	total A3		70 \$F\$18=\$\$20	Not Binding	0
\$G\$18	total A4		85 \$G\$18=\$G\$20	Not Binding	0

Microsoft Excel 8.0e Sensitivity Report						
Worksheet: [PT_prot_P\&T.xls]Sheet1						
Report Created: 29-04-2003 20:06:05						
Adjustable Cells						
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$D\$15	F1 A1	0	15	464	$1 \mathrm{E}+30$	15
\$E\$15	F1 A2	20	0	513	15	21
\$F\$15	F1 A3	0	84	654	1E+30	84
\$G\$15	F1 A4	55	0	867	21	351
\$D\$16	F2 A1	80	0	352	15	$1 \mathrm{E}+30$
\$E\$16	F2 A2	45	0	416	21	15
\$F\$16	F2 A3	0	217	690	1E+30	217
\$G\$16	F2 A4	0	21	791	$1 \mathrm{E}+30$	21
\$D\$17	F3 A1	0	728	995	$1 \mathrm{E}+30$	728
\$E\$17	F3 A2	0	351	682	$1 \mathrm{E}+30$	351
\$F\$17	F3 A3	70	0	388	84	$1 \mathrm{E}+30$
\$G\$17	F3 A4	30	0	685	351	84
Constraints						
		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$H\$15	F1 total	75	570	75	0	55
\$H\$16	F2 total	125	473	125	0	45
\$H\$17	F3 total	100	388	100	0	70
\$D\$18	total A1	80	-121	80	45	0
\$E\$18	total A2	65	-57	65	55	0
\$F\$18	total A3	70	0	70	0	$1 \mathrm{E}+30$
\$G\$18	total A4	85	297	85	70	0

The Transportation Problem

Properties of the TP

P1: The TP has at least one feasible solution.
Corollary: The TP has optimal solution.
P2: A TP where supplies and demands have integer values has at least one optimal solution with all variables integer valued.

The Transportation Problem - Variants

Problems that have the same structure of parameters but:
(V1) total supply > total demand: origin constraints" \leq ".
Opt. Sol. : Part of the supply is not transported
(V2) total supply < total demand: destination constraints " \leq ".
Opt. Sol. : Part of the demand is not satisfied
(V3) Destination requiring demand between a minimum and a maximum value:
2 constraints at the destination: " \leq maximum demand" and " \geq minimum demand".
(V4) Origin producing supply between a minimum and a maximum value: $\approx(\mathrm{V} 3)$
(V5) Infeasible link: corresponding variable is set to zero.
(V6) Maximization problem: in solver/excel choose OF: Max.

The Assignment Problem

Assignment Problem (AP)

Assign n people to n tasks - each person to a task, each task to a person minimising the total assignment cost.

Aplications:

- Assign people to tasks;
- Production planning (operations to machines; products to plants)

The Assignment Problem

Data: $\quad n=$ number of persons and tasks
$c_{i j}=$ cost associated with assignee i performing task $j(i, j=1, \ldots, n)$
$x_{i j}=\left\{\begin{array}{lr}1 & \text { if person } i \text { is assigned to job } j \\ 0 & \text { otherwise }\end{array}\right.$
Z - total cost of the assignment plan
LP Formulation:

$$
\begin{aligned}
& \text { Minimize } \mathrm{Z}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \\
& {\left[\begin{array}{l}
\sum_{j=1}^{n} x_{i j}=1 \quad(i=1, \ldots, n) \\
\sum_{i=1}^{n} x_{i j}=1 \quad(j=1, \ldots, n) \\
x_{i j} \geq 0 \quad(i, j=1, \ldots, n) \\
x_{i j} \text { binary }(i, j=1, \ldots, n)
\end{array}\right.}
\end{aligned}
$$

The Assignment Problem - Variants

(V1) number of people > number of tasks: people constraints" \leq ".
Opt.Sol.: some people is not assigned
(V2) number of people < number of tasks: task constraints " \leq ".
OS: some tasks are not performed
(V3) some task can be assigned to more than one person respective constraint " ≥ 1 "
(V4) some person can perform more than one task $\approx(V 3)$
(V5) Infeasible links: person i cannot be assigned to task j then $x_{i j}=0$.
(V6) Maximization problem: in solver/excel choose OF TO: Max.

